Постановка любой задачи заключается в том, чтобы перевести ее вербальное (словесное) описание в формальное.
В случае относительно простых задач такой переход осуществляется в сознании человека, который не всегда даже может объяснить, как он это сделал. Если полученная формальная модель (математическая зависимость между величинами в виде формулы, уравнения, системы уравнений) опирается на фундаментальный закон или подтверждается экспериментом, то этим доказывается ее адекватность отображаемой ситуации, и модель рекомендуется для решения задач соответствующего класса.
По мере усложнения задач получение модели и доказательство ее адекватности усложняется. Вначале эксперимент становится дорогостоящим и опасным (например, при создании сложных технических комплексов, реализации космических программ и т.д.), а применительно к экономическим объектам — практически нереализуемым. Тогда задача переходит в класс проблем принятия решений, и постановка задачи, формирование модели, т.е. перевод вербального описания в формальное, становятся важной составной частью процесса принятия решения. Причем эту составную часть не всегда можно выделить как отдельный этап, завершив который, можно обращаться с полученной формальной моделью так же, как с обычным математическим описанием; строгим и абсолютно справедливым. Большинство реальных ситуаций проектирования сложных технических комплексов и управления экономикой необходимо отображать классом самоорганизующихся систем, модели которых должны постоянно корректироваться и развиваться. При этом возможно изменение не только модели, но и метода моделирования, что часто является средством развития представления ЛПР о моделируемой ситуации.
Иными словами, перевод вербального описания задачи или проблемной ситуации в формальное, осмысление, интерпретация модели и получаемых результатов становятся неотъемлемой частью практически каждого этапа моделирования сложной развивающейся системы. Чтобы точнее охарактеризовать такой подход к моделированию процессов принятия решений, говорят о создании как бы «механизма» моделирования, «механизма» принятия решений (например, «хозяйственный механизм», «механизм проектирования и развития предприятия» и т.п.).
Возникающие у исследователей вопросы: «Как формировать такие развивающиеся модели или «механизмы»? Как доказывать адекватность моделей?» — и являются основным предметом системного анализа.
Для решения проблемы перевода вербального описания или проблемной ситуации в формальное отображение в различных областях деятельности стали развиваться специальные приемы и методы. Так возникли методы «мозговой атаки», «сценариев», экспертных оценок, «дерева целей» и т.п.
В свою очередь развитие математики шло по пути расширения средств постановки и решения трудно формализуемых задач.
Наряду с детерминированными, аналитическими методами классической математики возникла теория вероятностей и математическая статистика (как средство доказательства адекватности модели на основе представительной выборки и понятия вероятности правомерности использования модели и результатов моделирования). Для задач с большей степенью неопределенности инженеры стали привлекать теорию множеств, математическую логику, математическую лингвистику, теорию графов, что во многом стимулировало развитие этих направлений. Иными словами, математика стала постепенно накапливать средства работы с неопределенностью, со смыслом, который классическая математика исключала из объектов своего рассмотрения.
Таким образом, между неформальным, образным мышлением человека и формальными моделями классической математики сложился «спектр» методов, которые помогают получать и уточнять (формализовать) вербальное описание проблемной ситуации, с одной стороны, и интерпретировать формальные модели, связывать их с реальной действительностью, с другой. Этот «спектр» методов условно представлен на рис. 2.3, а.
Развитие методов моделирования, разумеется, шло не так последовательно, как показано на рис. 2.3, а. Методы возникали и развивались параллельно. Существуют различные модификации сходных методов их по-разному объединяли в группы, т.е. исследователи предлагали разные классификации. Постоянно возникают новые методы моделирования как бы на «пересечении» уже сложившихся групп. Однако основную идею существование «спектра» методов между вербальным и формальным представлением проблемной ситуации — этот рисунок иллюстрирует.
Первоначально исследователи, развивающие теорию систем, предлагали классификации систем, старались поставить им в соответствие определенные методы моделирования, позволяющие наилучшим образом отразить особенности того или иного класса. Такой подход к выбору методов моделирования подобен подходу прикладной математики. Однако в отличие от последней, в основу которой положены классы прикладных задач, системный анализ может один и тот же объект или одну и ту же проблемную ситуацию (в зависимости от степени неопределенности и по мере их познания) отображать разными классами систем и, соответственно, различными моделями.
Существует и другая точка зрения. Если последовательно менять методы приведенного на рис. 2.3, а «спектра» (не обязательно используя все), то можно постепенно, ограничивая полноту описания проблемной ситуации (что неизбежно при формализации), но сохраняя наиболее существенные с точки зрения цели (структуры целей) компоненты и связи между ними, перейти к формальной модели.
Такая идея реализовалась, например, при создании программного обеспечения ЭВМ и автоматизированных информационных систем путем последовательное перевода описания задачи с естественного языка на язык высокого уровня (язык управления заданиями, информационно-поисковый язык, язык моделирования, автоматизации проектирования), а с него — на один из языков программирования, подходящий для данной задачи (ПЛ/1, ПАСКАЛЬ, ЛИСП, СИ, ПРОЛОГ и т.п.), который в свою очередь транслируется в коды машинных команд, приводящих в действие аппаратную часть ЭВМ.
В то же время анализ процессов изобретательской деятельности, опыта формирования сложных моделей принятия решений показал, что практика не подчиняется такой логике, т.е. человек поступает иначе: он попеременно выбирает методы из левой и правой частей «спектра», приведенного на рис. 2.3, а.
Поэтому удобно «переломить» этот «спектр» методов примерно в середине, где графические методы смыкаются с методами структуризации, т.е. разделить методы моделирования систем на два больших класса: методы формализованного представления систем и методы, направленные на активизацию использования интуиции и опыта специалистов. Возможные классификации этих двух групп методов приведены на рис. 2.3, б.
МАИС и МФПС показаны на рисунке сплошной и различными штриховыми линиями.
Отметим, что на рис. 2.3, б в группе МАИС методы расположены снизу вверх примерно в порядке возрастания возможностей формализации, а в группе МФПС — снизу вверх возрастает внимание к содержательному анализу проблемы и появляется все больше средств такого анализа. Такое упорядочение помогает сравнивать методы и выбирать их при формировании развивающихся моделей принятия решений, при разработке методик системного анализа.
Классификации МАИС и особенно МФПС могут быть разными. На рис. 2.3, б приведена классификация МФПС, предложенная Ф. Е. Темниковым и подробнее рассматриваемая в параграфе 2.4, в которой приведены и другие примеры классификаций МФПС.
Специалист по системному анализу должен понимать, что любая классификация условна. Она — лишь средство, помогающее ориентироваться в огромном числе разнообразных методов и моделей. Поэтому разрабатывать классификацию нужно обязательно с учетом конкретных условий, особенностей моделируемых систем (процессов принятия решений) и предпочтений ЛПР, которым можно предложить выбрать классификацию.
Новые методы моделирования часто создаются на основе сочетания ранее существовавших классов методов.
Так, методы, названные на рис. 2.3 комплексированными (комбинаторика, топология), начинали развиваться параллельно в рамках линейной алгебры, теории множеств, теории графов, а затем оформились в самостоятельные направления.
Существуют также новые методы, базирующиеся на сочетании средств МАИС и МФПС. Эта группа методов представлена на рис. 2.3, б в качестве самостоятельной группы методов моделирования, обобщенно названной специальными методами. Стрелками показано, какие средства МАИС и МФПС использованы при создании этих методов.
Наибольшее распространение получили следующие специальные методы моделирования систем:
в этом методе используется удобный для человека структурный язык, помогающий выражать реальные взаимосвязи, отображающие в системе замкнутые контуры управления, и аналитические представления, позволяющие реализовать формальное исследование полученных моделей на ЭВМ с использованием специализированного языка DYNAMO;
это направление базируется на отображении в памяти ЭВМ и анализе проблемных ситуаций с применением специализированного языка, разрабатываемого с помощью выразительных средств теории множеств, математической логики и теории языков;
подход основан на использовании для реализации идей комбинаторики структурных представлений разного рода, с одной стороны, и средств математической лингвистики, с другой; в расширенном понимании подхода в качестве языковых (лингвистических) средств используются и другие методы дискретной математики (языки, основанные на теоретико-множественных представлениях, на использовании средств математической логики, семиотики);
подход базируется на идеях когнитивной психологии;
этот подход к моделированию самоорганизующихся (развивающихся) систем стал основой практически всех методик системного анализа;
теория основана на использовании для активизации интуиции ЛПР законов диалектики, а в качестве средства формализованного отображения объекта или проблемной ситуации — аппарата математической теории поля и теории цепей; для краткости подход назван информационным, поскольку в его основе лежит отображение реальных ситуаций с помощью информационных моделей.
2.2. Подходы к анализу и проектированию систем | 2.4. Методы формализованного представления систем |