Материал предоставлен https://it.rfei.ru

Интегрирование иррациональных выражений

Под иррациональным понимают выражение, в котором независимая переменная %%x%% или многочлен %%P_n(x)%% степени %%n \in \mathbb{N}%% входят под знак радикала (от латинского radix — корень), т.е. возводятся в дробную степень. Некоторые классы иррациональных относительно %%x%% подынтегральных выражений заменой переменной удается свести к рациональным выражениям относительно новой переменной.

Понятие рациональной функции одной переменной можно распространить на несколько аргументов. Если над каждым аргументом %%u, v, \dotsc, w%% при вычислении значения функции предусмотрены лишь арифметические действия и возведение в целую степень, то говорят о рациональной функции этих аргументов, которую обычно обозначают %%R(u, v, \dotsc, w)%%. Аргументы такой функции сами могут быть функциями независимой перменной %%x%%, в том числе и радикалами вида %%\sqrt[n]{x}, n \in \mathbb{N}%%. Например, рациональная функция $$ R(u,v,w) = \frac{u + v^2}{w} $$ при %%u = x, v = \sqrt[3]{x}%% и %%w = \sqrt{x^2 + 1}%% является рациональной функцией $$ R\left(x, \sqrt[3]{x}, \sqrt{x^2+1}\right) = \frac{x + \sqrt[3]{x^2}}{\sqrt{x^2 + 1}} = f(x) $$ от %%x%% и радикалов %%\sqrt[3]{x}%% и %%\sqrt{x^2 + 1}%%, тогда как функция %%f(x)%% будет иррациональной (алгебраической) функцией одной независимой переменной %%x%%.

Рассмотрим интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%%. Такие интегралы рационалируются заменой переменной %%t = \sqrt[n]{x}%%, тогда %%x = t^n, \mathrm{d}x = nt^{n-1}%%.

Пример 1

Найти %%\displaystyle\int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt[3]{x}}%%.

Подынтегральная функция искомого аргумента записана как функция от радикалов степени %%2%% и %%3%%. Так как наименьшее общее кратное чисел %%2%% и %%3%% равно %%6%%, то данный интеграл является интегралом типа %%\int R(x, \sqrt[6]{x}) \mathrm{d}x%% и может быть рационализирован посредством замены %%\sqrt[6]{x} = t%%. Тогда %%x = t^6, \mathrm{d}x = 6t \mathrm{d}t, \sqrt{x} = t^3, \sqrt[3]{x} =t^2%%. Следовательно, $$ \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt[3]{x}} = \int \frac{6t^5 \mathrm{d}t}{t^3 + t^2} = 6\int\frac{t^3}{t+1}\mathrm{d}t. $$ Примем %%t + 1 = z, \mathrm{d}t = \mathrm{d}z, z = t + 1 = \sqrt[6]{x} + 1%% и $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt[3]{x}} &= 6\int\frac{(z-1)^3}{z} \mathrm{d}t = \\ &= 6\int z^2 dz -18 \int z \mathrm{d}z + 18\int \mathrm{d}z -6\int\frac{\mathrm{d}z}{z} = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt[6]{x} + 1\right)^3 - 9 \left(\sqrt[6]{x} + 1\right)^2 + \\ &+~ 18 \left(\sqrt[6]{x} + 1\right) - 6 \ln\left|\sqrt[6]{x} + 1\right| + C \end{array} $$


Интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%% являются частным случаем дробно линейных иррациональностей, т.е. интегралов вида %%\displaystyle\int R\left(x, \sqrt[n]{\dfrac{ax+b}{cd+d}}\right) \mathrm{d}x%%, где %%ad - bc \neq 0%%, которые допускают рационализацию путем замены переменной %%t = \sqrt[n]{\dfrac{ax+b}{cd+d}}%%, тогда %%x = \dfrac{dt^n - b}{a - ct^n}%%. Тогда $$ \mathrm{d}x = \frac{n t^{n-1}(ad - bc)}{\left(a - ct^n\right)^2}\mathrm{d}t. $$

Пример 2

Найти %%\displaystyle\int \sqrt{\dfrac{1 -x}{1 + x}}\dfrac{\mathrm{d}x}{x + 1}%%.

Примем %%t = \sqrt{\dfrac{1 -x}{1 + x}}%%, тогда %%x = \dfrac{1 - t^2}{1 + t^2}%%, $$ \begin{array}{l} \mathrm{d}x = -\frac{4t\mathrm{d}t}{\left(1 + t^2\right)^2}, \\ 1 + x = \frac{2}{1 + t^2}, \\ \frac{1}{x + 1} = \frac{1 + t^2}{2}. \end{array} $$ Следовательно, $$ \begin{array}{l} \int \sqrt{\dfrac{1 -x}{1 + x}}\frac{\mathrm{d}x}{x + 1} = \\ = \frac{t(1 + t^2)}{2}\left(-\frac{4t \mathrm{d}t}{\left(1 + t^2\right)^2}\right) = \\ = -2\int \frac{t^2\mathrm{d}t}{1 + t^2} = \\ = -2\int \mathrm{d}t + 2\int \frac{\mathrm{d}t}{1 + t^2} = \\ = -2t + \text{arctg}~t + C = \\ = -2\sqrt{\dfrac{1 -x}{1 + x}} + \text{arctg}~\sqrt{\dfrac{1 -x}{1 + x}} + C. \end{array} $$

Рассмотрим интегралы вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%%. В простейших случаях такие интегралы сводятся к табличным, если после выделения полного квадрата сделать замену переменных.

Пример 3

Найти интеграл %%\displaystyle\int \dfrac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}}%%.

Учитывая, что %%x^2 + 4x + 5 = (x+2)^2 + 1%%, примем %%t = x + 2, \mathrm{d}x = \mathrm{d}t%%, тогда $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}} &= \int \frac{\mathrm{d}t}{\sqrt{t^2 + 1}} = \\ &= \ln\left|t + \sqrt{t^2 + 1}\right| + C = \\ &= \ln\left|x + 2 + \sqrt{x^2 + 4x + 5}\right| + C. \end{array} $$

В более сложных случаях для нахождения интегралов вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%% используются подстановки Эйлера.

Интегрирование рациональных дробейИнтегрирование тригонометрических функций