Processing math: 100%

Материал предоставлен https://it.rfei.ru

Некоторые распределения непрерывных случайных величин

Приведем примеры некоторых наиболее важных распределений непрерывных случайных величин.

Равномерное распределение

Случайная величина имеет равномерное распределение на отрезке [a,b], если ее плотность распределения

p(x)={0,       xa1ba,       a<xb0,       x>b.

Найдем ее функцию распределения.

Воспользуемся формулой F(x)=xp(x)dx.

Если xa, то p(x)=0, следовательно F(x)=0. Если xb, то p(x)=1/(ba), следовательно

xp(x)dx=a0dx+xa1badx=xaba

Если x>b, то это можно записать как x<+, следовательно

+p(x)dxa0dx+ba1ba++b0dx=baba=1.

Итак, искомая функция распределения

F(x)={0,       xaxaba,       a<xb1,       x>b.

Вероятность попадания равномерно распределенной случайной величины в интервал (x1,x2), лежащий внутри отрезка [a,b], равна F(x2)F(x1)=x2x1bа, т.е. пропорциональна длине этого интервала. Таким образом, равномерное распределение реализует схему геометрической вероятности при бросании точки на отрезок [a,b].

Экспоненциальное распределение

Случайная величина распределена по экспоненциальному (показательному) закону, если она имеет плотность распределения

p(x)={0,       x<0λeλx,       x0, где λ>0 параметр экспоненциального распределения. Для функции распределения в данном случае нетрудно получить следующее выражение:

F(x)={0,       x<01eλx,       x0.

Экспоненциально распределенная случайная величина X обладает весьма важным свойством, которое естественно назвать отсутствием последействия, т.е.

P(A|B)=P(AB)P(B)=P(A)P(B)       илиP{x1<X<x1+x2}=1eλx2

Пример

Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.

Нормальное распределение

Случайная величина распределена по нормальному (или гауссову) закону, или имеет нормальное (гауссово) распределение, если ее плотность

p(x)=1σ2πe(xm)22σ2. Нормальное распределение зависит от двух параметров: m — математического ожидания, σ — средне-квадратичного отклонения.

Плотность распределения вычисляется по формуле: F(X)=1σ2πxe(tm)22σ2dt При m=0 и σ=1 нормальный закон называют стандартным.

Как известно из курса математического анализа, интеграл ex2/2dx не может быть выражен через элементарные функции. Поэтому во всех справочниках и в большинстве учебников по теории вероятностей приведены таблицы значений функции стандартного нормального распределения.

Вероятность того, что случайная величина примет значение в интервале (a,b) равна P{a<X<b}=F(bmσ)F(amσ).

Непрерывные случайные величиныПроверка знаний: непрерывные случайные величины