Пусть %%f%% — отображение множества %%X%% в множество %%Y%%.
Отображение %%f%% называется инъективным,
если для любых элементов %%x_1, x_2 \in X%%, %%x_1 \neq x_2%%, следует, что %%f(x_1) \neq f(x_2)%%. $$ \forall x_1, x_2 \in X~~x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2). $$
Другими словами, отображение %%f%% инъективно, если образы различных элементов из %%X%% также различны.
Функция %%f(x) = x^2%%, определенная на множестве %%\mathbb{R}%%, не является инъективной, так как при %%x_1 = -1, x_2 = 1%% получаем одно и тоже значение функции %%f(x_1) = f(x_2) = 1%%.
Отображение %%f%% называется сюръективным, если для всякого элемента %%y \in Y%% существует элемент %%x \in X%% с условием, что %%f(x) = y%%. $$ \forall y \in Y~\exists x \in X : f(x) = y. $$
Другими словами, отображение %%f%% сюръективно, если каждый элемент %%y \in Y%% является образом хотя бы одного элемента %%x \in X%%.
Отображение %%f(x) = \sin(x)%%, определенное на множестве %%\mathbb R%%, с множеством %%Y = [-2,2]%% не является сюръективным, т.к. для элемента %%y = 2 \in Y%% нельзя найти прообраз %%x \in X%%.
Отображение %%f%% называется биективным, если оно инъективно и сюръективно. Биективное отображение также называется взаимно однозначным или преобразованием.
Обычно, словосочетания «инъективное отображение», «сюрьективное отображение» и «биективно отображение» заменяют на «инъекция», «сюръекция» и «биекция» соответственно.
Пусть %%f: X \to Y%% — некоторая биекция и пусть %%y \in Y%%. Обозначим через %%f^{-1}(y)%% единственный элемент %%x \in X%% такой, что %%f(x) = y%%. Тем самым мы определим некоторое новое отображение %%g: Y \to X%%, которое снова является биекцией. Ее называют обратным отображением.
Пусть %%X, Y = \mathbb R%% — множество действительных чисел. Функция %%f%% задана формулой %%y = 3x + 3%%. Имеет ли данная функция обратную? Если да, то какую?
Для того чтобы узнать имеет ли данная функция обратную ей, необходимо проверить является ли она биекцией. Для этого проверим является ли данное отображение инъективным и сюръективным.
Так как %%f%% — инъекция и сюръекция, то %%f%% — биекция. И, соответственно, обратным отображением является %%x = \frac{y-3}{3}%%.
Понятие отображения | Композиция |