Случайные события могут быть описаны с использованием понятия «вероятность». Соотношения теории вероятностей позволяют найти (вычислить) вероятности как одиночных случайных событий, так и сложных опытов, объединяющих несколько независимых или связанных между собой событий. Однако описать случайные события можно не только в терминах вероятностей.
То, что событие случайно, означает отсутствие полной уверенности в его наступлении, что, в свою очередь, создает неопределенность в исходах опытов, связанных с данным событием. Безусловно, степень неопределенности различна для разных ситуаций.
Например, если опыт состоит в определении возраста случайно выбранного студента 1-го курса дневного отделения вуза, то с большой долей уверенности можно утверждать, что он окажется менее 30 лет; хотя по положению на дневном отделении могут обучаться лица в возрасте до 35 лет, чаще всего очно учатся выпускники школ ближайших нескольких выпусков. Гораздо меньшую определенность имеет аналогичный опыт, если проверяется, будет ли возраст произвольно выбранного студента меньше 18 лет. Для практики важно иметь возможность произвести численную оценку неопределенности разных опытов. Попробуем ввести такую количественную меру неопределенности.
Начнем с простой ситуации, когда опыт имеет %%n%% равновероятных исходов. Очевидно, что неопределенность каждого из них зависит от n, т.е.
Мера неопределенности является функцией числа исходов %%f(n)%%.
Можно указать некоторые свойства этой функции:
* Для обозначения опытов со случайными исходами будем использовать греческие буквы (%%α%%, %%β%% и т.д.), а для обозначения отдельных исходов опытов (событий) - латинские заглавные (%%А%%, %%В%% и т.д.).
Для определения явного вида функции %%f(n)%% рассмотрим два независимых опыта %%α%% и %%β*%% с количествами равновероятных исходов, соответственно %%n_α%% и %%n_β%%. Пусть имеет место сложный опыт, который состоит в одновременном выполнении опытов α и β; число возможных его исходов равно %%nα \cdot nβ%%, причем, все они равновероятны. Очевидно, неопределенность исхода такого сложного опыта %%α ^ β%% будет больше неопределенности опыта %%α%%, поскольку к ней добавляется неопределенность %%β%%; мера неопределенности сложного опыта равна %%f(n_α \cdot n_β)%%. С другой стороны, меры неопределенности отдельных %%α%% и %%β%% составляют, соответственно, %%f(n_α)%% и %%f(n_β)%%. В первом случае (сложный опыт) проявляется общая (суммарная) неопределенность совместных событий, во втором - неопределенность каждого из событий в отдельности. Однако из независимости %%α%% и %%β%% следует, что в сложном опыте они никак не могут повлиять друг на друга и, в частности, %%α%% не может оказать воздействия на неопределенность %%β%%, и наоборот. Следовательно, мера суммарной неопределенности должна быть равна сумме мер неопределенности каждого из опытов, т.е. мера неопределенности аддитивна:
$$f(n_α \cdot n_β)=f(n_α)+f(n_β)~~~~~~(2.1)$$
Теперь задумаемся о том, каким может быть явный вид функции %%f(n)%%, чтобы он удовлетворял свойствам (1) и (2) и соотношению (2.1)? Легко увидеть, что такому набору свойств удовлетворяет функция %%log(n)%%, причем можно доказать, что она единственная из всех существующих классов функций. Таким образом:
За меру неопределенности опыта с n равновероятными исходами можно принять число %%log(n)%%.
Следует заметить, что выбор основания логарифма в данном случае значения не имеет, поскольку в силу известной формулы преобразования логарифма от одного основания к другому.
$$log_b n=log_b а\cdot log_a n $$
переход к другому основанию состоит во введении одинакового для обеих частей выражения (2.1) постоянного множителя %%log_b а%%, что равносильно изменению масштаба (т.е. размера единицы) измерения неопределенности. Поскольку это так, имеется возможность выбрать удобное (из каких-то дополнительных соображений) основание логарифма. Таким удобным основанием оказывается 2, поскольку в этом случае за единицу измерения принимается неопределенность, содержащаяся в опыте, имеющем лишь два равновероятных исхода, которые можно обозначить, например, ИСТИНА (True) и ЛОЖЬ (False) и использовать для анализа таких событий аппарат математической логики.
Единица измерения неопределенности при двух возможных равновероятных исходах опыта называется бит.
Название бит происходит от английского binary digit, что в дословном переводе означает «двоичный разряд» или «двоичная единица».
Таким образом, нами установлен явный вид функции, описывающей меру неопределенности опыта, имеющего %%n%% равновероятных исходов:
$$f(n)=log_2 n~~~~~~(2.2)$$
Эта величина получила название энтропия. В дальнейшем будем обозначать ее Н
.
Вновь рассмотрим опыт с %%n%% равновероятными исходами. Поскольку каждый исход случаен, он вносит свой вклад в неопределенность всего опыта, но так как все %%n%% исходов равнозначны, разумно допустить, что и их неопределенности одинаковы. Из свойства аддитивности неопределенности, а также того, что согласно (2.2) общая неопределенность равна %%log_2 n%%, следует, что неопределенность, вносимая одним исходом составляет
$$\frac{1}{n}log_2 n = - \frac{1}{n}log_2 \frac{1}{n} = -p \cdot log_2 p $$
где %%р =\frac{1}{n}%% - вероятность любого из отдельных исходов.
Таким образом, неопределенность, вносимая каждым из равновероятных исходов, равна:
$$H=-p \cdot log_2 p~~~~~~~~~~~~(2.3)$$
Теперь попробуем обобщить формулу (2.3) на ситуацию, когда исходы опытов неравновероятны, например, %%p(A_1)%% и %%p(A_2)%%. Тогда:
$$H_1=-p(А_1) \cdot log_2 р(А_1)$$ $$H_2=-p(А_2) \cdot log_2 р(А_2)$$
$$H=H_1+H_2=-p(А_1) \cdot log_2 р(А_1)-p(А_2) \cdot log_2 р(А_2)$$
Обобщая это выражение на ситуацию, когда опыт %%α%% имеет %%n%% неравновероятных исходов %%А_1, А_2... А_n%%, получим:
$$H(α)=-\sum^{n}_{i=1} {p(А_i)}\cdot log_2 p(А_i)~~~~~~(2.4)$$
Введенная таким образом величина, как уже было сказано, называется энтропией опыта. Используя формулу для среднего значения дискретных случайных величин, можно записать:
$$H(α)\leqslant -log_2 p(A^α)$$
%%А^α%% - обозначает исходы, возможные в опыте α.
Энтропия является мерой неопределенности опыта, в котором проявляются случайные события, и равна средней неопределенности всех возможных его исходов.
Для практики формула (2.4) важна тем, что позволяет сравнить неопределенности различных опытов со случайными исходами.
Пример 2.1. Имеются два ящика, в каждом из которых по 12 шаров. В первом -3 белых, 3 черных и 6 красных; во втором - каждого цвета по 4. Опыты состоят в вытаскивании по одному шару из каждого ящика. Что можно сказать относительно неопределенностей исходов этих опытов?
Согласно (2.4) находим энтропии обоих опытов:
%%Н_α = -\frac{3}{12}log_2 \frac{3}{12}-\frac{3}{12}log_2 \frac{3}{12}-\frac{6}{12}log_2 \frac{6}{12}=1,50%% бит
%%Н_β = -\frac{4}{12}log_2 \frac{4}{12}-\frac{4}{12}log_2 \frac{4}{12}-\frac{4}{12}log_2 \frac{4}{12}=1,58%% бит
%%Н_β > Н_α%%, т.е. неопределенность результата в опыте β выше и, следовательно, предсказать его можно с меньшей долей уверенности, чем результат α.
Понятие информации в теории Шеннона | Свойства энтропии |