Материал предоставлен https://it.rfei.ru

Способы построения двоичных кодов

Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды

Как следует из названия, в способах кодировании, относящихся к этой группе, знаки первичного алфавита (например, русского) кодируются комбинациями символов двоичного алфавита (т.е. 0 и 1), причем, длина кодов и, соответственно, длительность передачи отдельного кода, могут различаться. Длительности элементарных сигналов при этом одинаковы %%(τ_0 = τ_1 = τ)%%. Очевидно, для передачи информации, в среднем приходящейся на знак первичного алфавита, необходимо время %%K(A,2) \cdot τ%%.

Таким образом, задачу оптимизации неравномерного кодирования можно сформулировать следующим образом: построить такую схему кодирования, в которой суммарная длительность кодов при передаче (или суммарное число кодов при хранении) данного сообщения была бы наименьшей.

За счет чего возможна такая оптимизация? Очевидно, суммарная длительность сообщения будет меньше, если применить следующий подход: тем знакам первичного алфавита, которые встречаются в сообщении чаще, присвоить меньшие по длине коды, а тем, относительная частота которых меньше - коды более длинные. Другими словами, коды знаков первичного алфавита, вероятность появления которых в сообщении выше, следует строить из возможно меньшего числа элементарных сигналов, а длинные коды использовать для знаков с малыми вероятностями.

Параллельно должна решаться проблема различимости кодов. Представим, что на выходе кодера получена следующая последовательность элементарных сигналов:

00100010000111010101110000110

Каким образом она может быть декодирована? Если бы код был равномерным, приемное устройство просто отсчитывало бы заданное (фиксированное) число элементарных сигналов (например, 5, как в коде Бодо) и интерпретировало их в соответствии с кодовой таблицей. При использовании неравномерного кодирования возможны два подхода к обеспечению различимости кодов. Первый состоит в использовании специальной комбинации элементарных сигналов, которая интерпретируется декодером как разделитель знаков. Второй - в применении префиксных кодов. Рассмотрим подробнее каждый из подходов.

Неравномерный код с разделителем

Условимся, что разделителем отдельных кодов букв будет последовательность 00 (признак конца знака), а разделителем слов-слов - 000 (признак конца слова - пробел). Довольно очевидными оказываются следующие правила построения кодов:

  • код признака конца знака может быть включен в код буквы, поскольку не существует отдельно (т.е. кода всех букв будут заканчиваться 00);
  • коды букв не должны содержать двух и более нулей подряд в середине (иначе они будут восприниматься как конец знака);
  • код буквы (кроме пробела) всегда должен начинаться с 1;
  • разделителю слов (000) всегда предшествует признак конца знака; при этом реализуется последовательность 00000 (т.е., если в конце кода встречается комбинация ...000 или ...0000, они не воспринимаются как разделитель слов); следовательно, коды букв могут оканчиваться на 0 или 00 (до признака конца знака).

В соответствии с перечисленными правилами построим кодовую табл. 3.1 для букв русского алфавита, основываясь на приведенных ранее (табл. 2.1.) вероятностях появления отдельных букв.

Теперь можно найти среднюю длину кода К(r,2) для данного способа кодирования:

$$К(r,2)=\sum^{32}_{j=1} {p_jk_j}=4.964$$

Поскольку для русского языка, %%I_1(r) = 4,356 бит%%, избыточность данного кода, согласно (3.5), составляет:

$$Q(r,2)=\frac{4.964}{4.356}-1 \approx 0.14$$

это означает, что при данном способе кодирования будет передаваться приблизительно на 14% больше информации, чем содержит исходное сообщение. Аналогичные вычисления для английского языка дают значение %%К(e,2) = 4,716%%, что при %%I_1(e) = 4,036%% бит приводят к избыточности кода %%Q(e,2) = 0,168%%.

Таблица 3.1.

БукваКод%%p_j\cdot 10^3%%%%k_j%% БукваКод%%p_j\cdot 10^3%%%%k_j%%
пробел0001743я1011000187
о100903ы1011100167
е1000724з1101000167
а1100624ь,ъ1101100147
и10000625б1110000147
т10100535г1110100137
н11000535ч1111000127
с11100455й1111100107
р101000406х1010100098
в101100386ж1010110078
л110000356ю1011000068
к110100286ш1011010068
м111000266ц1011100048
д111100256щ1011110038
п1010000237э1101000038
у1010100217ф1101010028

Рассмотрев один из вариантов двоичного неравномерного кодирования, попробуем найти ответы на следующие вопросы: возможно ли такое кодирование без использования разделителя знаков? Существует ли наиболее эффективный (оптимальный) способ неравномерного двоичного кодирования?

Суть первой проблемы состоит в нахождении такого варианта кодирования сообщения, при котором последующее выделение из него каждого отдельного знака (т.е. декодирование) оказывается однозначным без специальных указателей разделения знаков. Наиболее простыми и употребимыми кодами такого типа являются так называемые префиксные коды, которые удовлетворяют следующему условию (условию Фано):

  • В языковедении термин «префикс» означает «приставка».

Неравномерный код может быть однозначно декодирован, если никакой из кодов не совпадает с началом (префиксом*) какого-либо иного более длинного кода.

Например, если имеется код 110, то уже не могут использоваться коды 1, 11, 1101, 110101 и пр. Если условие Фано выполняется, то при прочтении (расшифровке) закодированного сообщения путем сопоставления с таблицей кодов всегда можно точно указать, где заканчивается один код и начинается другой.

Пример.Пусть имеется следующая таблица префиксных кодов:

а л м р у ы
10010001101100111

Требуется декодировать сообщение:

00100010000111010101110000110

Декодирование производится циклическим повторением следующих действий:

  • (a) отрезать от текущего сообщения крайний левый символ, присоединить справа к рабочему кодовому слову;
  • (b) сравнить рабочее кодовое слово с кодовой таблицей; если совпадения нет, перейти к (а);
  • (c) декодировать рабочее кодовое слово, очистить его;
  • (d) проверить, имеются ли еще знаки в сообщении; если «да», перейти к (а).

Применение данного алгоритма дает:

шаг рабочее слово текущее сообщение распознанный знак декодированное сообщение
0Пусто0010001000011101010101110000110--
100100010000111010101110000110нет-
2001000100001110101011110000110мм
310001000011101010101110000110нетм
4100010000111010101110000110ама
50010000111010101110000110нетма
60010000111010101110000110ммам
...

Доведя процедуру до конца, получим сообщение: «мама мыла раму».

Таким образом, использование префиксного кодирования позволяет делать сообщение более коротким, поскольку нет необходимости передавать разделители знаков. Однако условие Фано не устанавливает способа формирования префиксного кода и, в частности, наилучшего из возможных. Мы рассмотрим две схемы построения префиксных кодов.

Постановка задачи кодирования, Первая теорема ШеннонаРавномерное алфавитное двоичное кодирование. Байтовый код