MT1100: Дискретная математика

Материал предоставлен https://it.rfei.ru

Содержание

Элементы комбинаторики
Элементы комбинаторики с повторениями
Этот модуль не является обязательным для завершения учебного курса.
Элементы математической логики
Этот модуль не является обязательным для завершения учебного курса.
Основы теории графов
Этот модуль не является обязательным для завершения учебного курса.
Обязательная оценка курса

В данном курсе изложены элементы дискретной (конечной) математики. Дискретная математика является основным математическим аппаратом информатики и вычислительной техники и потому служит базой для многочисленных приложений в экономике, технике и социальной сфере.

Описание

В данном курсе изложены в доступной форме разделы, традиционно изучаемые в курсе дискретной математики: элементы математической логики, теории множеств, теории графов и комбинаторики.

Требования

Курс не предусматривает специальных требований к началу изучения. Однако мы рекомендуем приступать к изучению материала после ознакомления с курсом MT1102 — «Введение в математику».

Польза

Знания, полученные из этого курса, будут полезны при изучении следующих дисциплин: математический анализ, алгебра, теория вероятностей, функциональный анализ и все предметы компьютерного цикла дисциплин.

Цели и намерения

Главных целей у данного курса две: первая — предоставить слушателю базовые знания по теории множеств, математической логике, теории графов и комбинаторике; вторая — стать теоретической основой для дисциплин компьютерного цикла.

Условия завершения и оценка

Электронный экзамен.

Для получения оценки “удовлетворительно” Вам необходимо ответить на 100% обязательных тестовых заданий, которые вынесены на зачет;

для получения оценки “хорошо” — 80%;

для получения оценки “отлично” — 90%-100%.

Результаты обучения

В результате изучения дисциплины студент должен:

  • знать основные понятия дискретной математики, использующиеся при изучении общетеоретических, математических и специальных дисциплин;
  • уметь применять методы дискретной математики к решению практических задач;
  • владеть навыками решения задач по математической логике, теории множеств, комбинаторике и теории графов, возникающих на практике.

Результат с точки зрения государственного стандарта РФ

Изучив курс, студент будет способен:

  • использовать основные методы естественнонаучных дисциплин в профессиональной деятельности для теоретического и экспериментального исследования;
  • использовать соответствующий математический аппарат и инструментальные средства для обработки, анализа и систематизации информации по теме исследования.

Используемые образовательные технологии

Технология дистанционного обучения, технология объяснительно-иллюстративного обучения, технология развивающего обучения, технология проблемного обучения, технология информационного обучения, технология организации самостоятельной работы, технология развития критического мышления, технология постановки цели, технология концентрированного обучения.

Рекомендованная литература

  1. Триумфгородских М.В. Дискретная математика и математическая логика для информатиков, экономистов и менеджеров.- М.: Диалог-МИФИ, 2011.-180с.
  2. Новиков Ф.А. Дискретная математика для программистов.- СПб.: Питер, 2006.-304с.
  3. Белоусов А.И., Ткачев С.Б. Дискретная математика.- М.: Изд-во МГТУ им. Н.Э. Баумана,2004.-744с.